92 research outputs found

    Halogen and hydrogen bonding in multicomponent crystals of tetrabromo-1H-benzotriazole

    Get PDF
    4,5,6,7-Tetrabromo-1H-benzotriazole (TBBT) is still considered a reference inhibitor of casein kinase II (CK2), a valuable target for anticancer therapy, even though the poor solubility in water of this active pharmaceutical ingredient (API) has prevented its implementation in therapy. We decided to explore the interactions preferentially formed by TBBT in crystalline solids in order to obtain information helpful for the development of new TBBT cocrystals possibly endowed with improved bioavailability. In this paper, we describe the synthesis and the structural characterization of the TBBT methanol solvate and of the TBBT salt with N,N,Nâ\u80²,Nâ\u80²-tetramethylethylenediamine. It is shown that TBBT can give rise to several competing interactions. This API is clearly a good halogen bond (XB) donor, with bromine atoms adjacent to the triazole ring possibly better donors than the two others. TBBT is also a good hydrogen bond (HB) donor, with the triazole hydrogen forming an HB with the acceptor or being transferred to it. Interestingly, one of the triazole nitrogens was proven to be able to work as a hydrogen bond acceptor

    Systematic Study of Podand Molecules for Synergistic Halogen and Hydrogen Bond-Driven Anion Recognition in the Solid State

    Get PDF
    The increasing demand of species for the efficient capture and sensing of anions benefits from a systematic study of anion binding capabilities in the solid state. This work reports a detailed crystallographic study of ten structurally related podands and shows that these charged receptors bind anions with a combination of charge-assisted halogen and hydrogen bonds. Computational tools helped in highlighting the role of the different involved interaction and afforded possible design principles for the design of improved podands

    Halogen bonding in hypervalent iodine and bromine derivatives: Halonium salts

    Get PDF
    Halogen bonds have been identified in a series of ionic compounds involving bromonium and iodonium cations and several different anions, some also containing hypervalent atoms. The hypervalent bromine and iodine atoms in the examined compounds are found to have positive Ï\u83-holes on the extensions of their covalent bonds, while the hypervalent atoms in the anions have negative Ï\u83-holes. The positive Ï\u83-holes on the halogens of the studied halonium salts determine the linearity of the short contacts between the halogen and neutral or anionic electron donors, as usual in halogen bonds

    2-(2,3,5,6-Tetra­fluoro-4-iodo­anilino)­ethanol

    Get PDF
    The reaction of 2-amino­ethanol and iodo­penta­fluoro­benzene in the presence of K2CO3 gave the title compound, C8H6F4INO, in high yield. The structure is characterized by double layers of mol­ecules linked by O—H⋯O and N—H⋯O hydrogen bonds, and linear C—I⋯F [I⋯F = 3.049 (2) Å] and bent C—I⋯I [I⋯I = 3.9388 (7) Å] inter­actions between pairs of nearly parallel iodo­tetra­fluoro­phenyl groups. No O⋯I or N⋯I halogen bonding is found

    SFM study of the surface of halogen-bonded hybrid co-crystals containing long-chain perfluorocarbons

    Get PDF
    Different scanning force microscopy (SFM) techniques were employed to investigate the structure and composition of the fundamental crystal faces of prototype halogen-bonded co-crystals of long-chain perfluorocarbons. These crystals were found to show surfaces with well-defined ledges formed by intersecting crystal planes having different chemical compositions with the perfluorocarbons (PFCs) covering the largest area of the crystal as a reminiscence of the strong segregation observed in the bulk crystal structure

    The Halogen Bond

    Get PDF
    The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design

    Coordination networks incorporating halogen-bond donor sites and azobenzene groups

    Get PDF
    Two Zn coordination networks, {[Zn(1)(Py)(2)](2)(2-propanol)}(n) (3) and {[Zn(1)(2)(Bipy)(2)](DMF)(2)}(n) (4), incorporating halogen-bond (XB) donor sites and azobenzene groups have been synthesized and fully characterized. Obtaining 3 and 4 confirms that it is possible to use a ligand wherein its coordination bond acceptor sites and XB donor sites are on the same molecular scaffold (i.e., an aromatic ring) without interfering with each other. We demonstrate that XBs play a fundamental role in the architectures and properties of the obtained coordination networks. In 3, XBs promote the formation of 2D supramolecular layers, which, by overlapping each other, allow the incorporation of 2-propanol as a guest molecule. In 4, XBs support the connection of the layers and are essential to firmly pin DMF solvent molecules through I center dot center dot center dot O contacts, thus increasing the stability of the solvated systems

    Halogen bond directionality translates tecton geometry into self-assembled architecture geometry

    Get PDF
    The structures of halogen-bonded infinite chains involving two diiodoperfluoroalkanes and a bent bis(pyrid-4′-yl)oxadiazole show that the geometry of the pyridyl pendant rings is translated into the angle between the formed halogen bonds. © 2013 The Royal Society of Chemistry

    The quest for a molecular capsule assembled via halogen bonds

    Get PDF
    A halogen-bonded capsule is obtained via directed assembly of a rigid tetra(3-pyridyl) cavitand and a flexible tetra(4-iodotetrafluorophenyl) calix[4]arene. The pyridyl nitrogen atoms from one cavitand molecule interact with the iodine atoms of a single calixarene molecule through short and directional I…N halogen bonds. The flexibility of the ethylenedioxy moieties on the calixarene platform results in positional flexibility of the iodotetrafluorobenzene sites which, coupled with a supramolecular chelating effect, allow for an effective partner-induced geometric fitting between four nitrogen atoms on the cavitand and four iodine atoms on the calixarene

    Multinuclear Solid-State Magnetic Resonance as a Sensitive Probe of Structural Changes upon the Occurrence of Halogen Bonding in Co-crystals

    Get PDF
    Although the understanding of intermolecular interactions, such as hydrogen bonding, is relatively well-developed, many additional weak interactions work both in tandem and competitively to stabilize a given crystal structure. Due to a wide array of potential applications, a substantial effort has been invested in understanding the halogen bond. Here, we explore the utility of multinuclear (13C, 14/15N, 19F, and 127I) solid-state magnetic resonance experiments in characterizing the electronic and structural changes which take place upon the formation of five halogen-bonded co-crystalline product materials. Single-crystal X-ray diffraction (XRD) structures of three novel co-crystals which exhibit a 1:1 stoichiometry between decamethonium diiodide (i.e., [(CH3)3N+(CH 2)10N+(CH3)3][2 I -]) and different para-dihalogen-substituted benzene moieties (i.e., p-C6X2Y4, X=Br, I; Y=H, F) are presented. 13C and 15N NMR experiments carried out on these and related systems validate sample purity, but also serve as indirect probes of the formation of a halogen bond in the co-crystal complexes in the solid state. Long-range changes in the electronic environment, which manifest through changes in the electric field gradient (EFG) tensor, are quantitatively measured using 14N NMR spectroscopy, with a systematic decrease in the 14N quadrupolar coupling constant (CQ) observed upon halogen bond formation. Attempts at 127I solid-state NMR spectroscopy experiments are presented and variable-temperature 19F NMR experiments are used to distinguish between dynamic and static disorder in selected product materials, which could not be conclusively established using solely XRD. Quantum chemical calculations using the gauge-including projector augmented-wave (GIPAW) or relativistic zeroth-order regular approximation (ZORA) density functional theory (DFT) approaches complement the experimental NMR measurements and provide theoretical corroboration for the changes in NMR parameters observed upon the formation of a halogen bond
    corecore